Hydrozirconation of Phospha-alkenes and Phosphaimines. Evidence for the Formation of P–C–Zr and P–N–Zr Three-membered Rings

Jean Pierre Majoral,* Nathalie Dufour, Franc Meyer, Anne-Marie Caminade, Robert Choukroun, and (the late) Danièle Gervais

Laboratoire de Chimie de Coordination du CNRS, UP 8241, lié par conventions à l'Université Paul Sabatier et à l'Institut National Polytechnique, 205 route de Narbonne, 31077 Toulouse Cédex, France

Addition of $bis(\eta$ -cyclopentadienyl)zirconium hydride (Cp₂ZrHCl) to phospha-alkenes and phosphaimines leads either to a functionalized $bis(\eta$ -cyclopentadienyl)zirconium phosphirane and azaphosphirane or to a protonated dico-ordinated phosphorus species.

Recently it has been demonstrated that the reaction of dimethylphosphinomethanide (1) $Li[Me_2PC(SiMe_3)_2]$ with Cp_2ZrCl_2 (Cp = cyclopentadienyl) leads to the first examples of Zr-P bonding in dimethylphosphinomethylzirconium(rv) complexes¹ (2) rather than to the corresponding 16 electron zirconium complex (3) as reported in a closely related

$$Li \left[Me_2 PC(SiMe_3)_2 \right]$$
(1)

Me

reaction.² It has been postulated that steric hindrance at the carbanionic C atom of the ligand (1) favours the formation of this unique phosphorus-zirconium three membered ring. This communication reports a convenient access to the first functionalized bis(η -cyclopentadienyl)zirconium phosphirane (6) and zirconocene azaphosphirane (12) as well as the formation of a novel P-protonated phosphaimine or diphosphirane.

Addition of the hydride Cp₂ZrHCl (4) to a tetrahydrofuran (THF) solution of the phospha-alkene (Me₃Si)₂N-P = CH(SiMe₃) (5) at -20 °C affords the metallated three membered ring (6) as a white powder in 95% yield (Scheme

1). The medium resolution mass spectrum (70 eV) exhibits a parent peak at m/z 533. The ³¹P NMR chemical shift of (6) consists of a doublet (δ 42 p.p.m.) with a large P–H coupling constant (¹J_{PH} 346 Hz) indicating P co-ordination. These data are in agreement with a cyclic structure and not with the corresponding linear form (Me₃Si)₂NP(H)CH(SiMe₃)-(ZrCp₂Cl) which would have presented similar ³¹P NMR values; for example (Me₃Si)₂NP(H)CH₂(SiMe₃) [δ (³¹P) 3.2 p.p.m., ¹J_{PH} 209 Hz].³ Indeed all the known secondary phosphines of R₂NP(H)R (R = alkyl) type show ¹J_{PH} values smaller than 240 Hz. Moreover such a ³¹P deshielding effect is reported in the literature¹ [Me₂PCH₂ZrCp₂Cl δ -36.2 p.p.m.; Me₂P–C(SiMe₃)₂ZrCp₂Cl δ 2.73 p.p.m.]. ¹H NMR (two doublets for the Cp groups at δ 5.74 and 5.81 with J_{HP} 2.4 and 1.9 Hz respectively[†] as well as ¹³C NMR data (two singlets for the Cp groups) confirm our assignment for (**6**).

A 1,2-addition of Cp_2ZrHCl to the P=C double bond of (5) followed by cyclisation is a reasonable postulation to explain the formation of the cyclic adduct (6).

Treatment of the P-halogenated phospha-alkene (7) with (4) gives rise to the diphosphene (8)⁴ (major compound), the diphosphirane (9), and some other by-products not yet identified. A reverse 1,2-addition of the zirconium hydride to the P–C double bond of (7) followed by Cp₂ZrCl₂ elimination might account for the formation of derivative (8) (Scheme 2). The diphosphirane (9) may also be prepared directly by reacting the corresponding halogenated diphosphirane (10)⁵ with tributyltin hydride [(9) δ (³¹P) – 134.4 and –244.9 p.p.m., ¹J_{PP} 161.2, ¹J_{PH} 149 Hz] (Scheme 3).

The reaction of the phosphaimine (11) in THF with the hydride (4) under the same experimental conditions, leads only to a functionalized zirconium-containing phosphorus species (12) obtained as a white powder in near quantitative yield (Scheme 4). We have been unable to obtain suitable crystals for X-ray analysis. Nevertheless the following data suggest a cyclic structure for (12). ³¹P NMR spectra exhibit a doublet at + 34 p.p.m. with a large coupling constant of 317

Hz[‡] which falls in the expected range for a P–H metallated complex.⁶ ¹H NMR (two doublets for the Cp groups at 5.85 and 6 with P–H coupling contants of 2.7 and 1.9 Hz respectively) and ¹³C NMR data (two singlets for the Cp groups at δ 110.2 and 111.1) are in agreement with the proposed cyclic structure (12) (mass spectrum, *m*/z 534).

On the other hand, reaction of the chlorophosphaimine (13) with (4) affords a mixture of the new phosphaimine (14) $[\delta^{(31P)} 84.4 \text{ p.p.m.}, {}^{1}J_{PH} 208 \text{ Hz}]$ and of the primary phosphine (15) $[\delta^{(31P)} -43.5 \text{ p.p.m.}, {}^{1}J_{PH} 201 \text{ Hz})$ (Scheme 5). Compound (14) was also prepared directly by reacting (13) with tributyltin hydride. The formation of derivative (15) may involve a 1,2-addition to the P=N double bond, the Cp₂ZrCl group being linked to phosphorus, followed by bis(η -cyclopentadienyl)zirconium dichloride elimination and hydrogen abstraction from the solvent (THF) by the transient phosphinidene <P-NHAr. In this case no trace of the corresponding dimer, the diphosphene ArNH-P=P-NHAr, has been detected.

Work is in progress to demonstrate the mechanism of formation of these compounds and to extend these reactions not only to other phospha-alkenes and phosphaimines but also to various unsaturated phosphorus species.

Received, 13th December 1989; Com. 9/05322K

References

- 1 H. H. Karsch, B. Deubelly, J. Hofmann, U. Pieper, and G. Müller, J. Am. Chem. Soc., 1988, **110**, 3654.
- 2 H. H. Karsch, G. Müller, and C. Krüger, J. Organomet. Chem., 1984, 273, 195.
- 3 H. R. O'Neal and R. Neilson, Inorg. Chem., 1983, 22, 814.
- 4 J. Escudié, C. Couret, H. Ranaivonjatovo, and J. Satgé, J. Chem.
- Soc., Chem. Commun., 1984, 1621.
 5 A. M. Caminade, J. P. Majoral, R. Mathieu, and Y. Y. C. Yeung Lam Ko, J. Chem. Soc., Chem. Commun., 1987, 639.
- 6 See, for example, R. Mathieu, A. M. Caminade, J. P. Majoral, S. Attali, and M. Sanchez, *Organometallics*, 1986, 5, 1914; A. M. Caminade, J. P. Majoral, M. Sanchez, R. Mathieu, S. Attali, and A. Grand, *ibid.*, 1987, 6, 1459; A. M. Caminade, J. P. Majoral, A. Igau, and R. Mathieu, *New J. Chem.*, 1987, 11, 457.

[†] A similar small proton phosphorus coupling constant (J_{HP} 2 Hz) has been detected for the Cp groups in (1).¹

[‡] For comparison: ¹J_{PH} 210 Hz in [(Me₃Si)₂N]₂P-H.³